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Abstract: Structurally unbalanced operation of an induction
machine typically occurs during emergency conditions. A
unified modeling and control approach for a three phase
induction machine drive with a particular structural
unbalance (one phase open) is developed based directly on
the resulting asymmetrical machine structure. With a new
stator winding decoupling transformation developed in this
paper, the machine (with one phase open) is made equivalent
to a two phase machine with perpendicular d-g stator
windings having different numbers of turns. Based on this
machine model, field-oriented control strategy is developed
to guarantee the desired independent control of rotor flux
and electromagnetic torque in spite of the unbalanced
condition. The method employed may be extended to other
type of structural unbalances.

L INTRODUCTION

The voltage source inverter fed three phase induction
machine drives have found the largest application in the area
of variable speed drives because of simplicity of its inverter

-configuration, economy and ruggedness of the motor
structure, and high performance. However, as is common
with most of the variable speed electrical machine drives,
the reliability of this kind of system suffers mostly from the
failure of semiconductor devices in the inverter. In most
cases, the failure would result in the complete switch off of
the drive system. However, in some applications where
continuous operation is desirable or critical, such as in an
electric vehicle or aircraft, a switch off of the entire drive
system becomes unacceptable.

One common type of drive system faults is a failed
short-circuited switch in the inverter as depicted in Fig. 1. In
this case one of the motor phases is continuously connected
to positive (or negative) side of the DC bus. As a
consequence, there are only four switching modes that can
be realized as shown in Fig. 2. Clearly, any switching in this
case would result in considerable amount of DC current in
the stator winding of the machine and thus may cause further
damage to the rest of the inverter legs. Moreover, braking
torque would be generated due to the flowing of the DC
current in machine windings and thereby make the
continuous driving of the load virtually impossible.
Therefore, whenever a short-circuited switch fault occurs, it
must be isolated before any measure can be taken to realize
the “limp home mode” of operation.
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Fig. 1 Three Phase Induction Machine Drive System with
One Switch Short-Circuited

Fig. 3 shows the topology that can solve the problem
caused by a short-circuited switch. One fuse for each phase
and a “triac” (inverse/parallel connected thyristors)
connecting the stator winding neutral point to the DC bus
center tap are required in this approach. The fault isolation
device will be referred to as FISD in this paper Whenever a
short-circuited switch fault is detected, “off” gating signals
are sent to all the switches in the inverter. In the mean time,
“on” signal is sent to the FISD, a DC current will then find
its way through the short-circuited switch, machine winding,
and the FISD to blow out the fuse in the faulty phase and
thus isolate the fault. The FISD will be kept at “on” state to
provide another degree of freedom for the “limp home”
operation. Since only one FISD is used in this topology, it
will be referred to as single FISD topology latter in this
report. The equivalent circuit topology of the drive system
after the fault isolation is depicted in Fig. 4.
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Fig. 2 Realizable Voltage Vectors (a) Before And (b) After
The Short-Circuited Switch Fault
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Fig. 3 Single FISD Topology for Isolating Short-Circuited
Switch Fault

With one phase open-circuited, an induction machine
can continue to be operated with an asymmetrical winding
structure and unbalanced excitation. However, the loss of
one phase will drastically change the dynamic behavior of
the machine because the interactions between the lost phase
and the rest of the machine windings due to mutual coupling
no longer exist. As the transient response of an electric
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machine is critical in a modern drive system, it is nec&@sary
to develop analytical tools which can handle the dynamics of
electric machines under structurally unbalanced operating
conditions. In this paper, a unified modeling and contrel
approach for a three phase induction machine with one
phase open is proposed. Instead of using the conventional
symmetrical component method, the proposed technique is
established on the basis of the asymmetrical winding
structure directly, and thus provides a precise, insightful tool
to the modeling and control of induction machine with
structural unbalance.
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Fig. 4 a) Three Phase Induction Machine Drive System with
One Phase Open, b) Stator winding axes, c) Rotor winding

II. MACHINE MODELLING
With one phase open (assume phase c), the voltage
equations of the machine written in real machine variables
(phase variables) can be found as follows.
Stator voltage equation:

[Vs] = [Rs] ’ [is]"' p- ([)“S])



= [RS] ) [is] +p ([LSS] ’ [iS]+ [Lsr] ) [ir]) 1

Rotor voltage equation:

[Vr] = [Rr] : [ir] tp ([;Lr])
= [Rr]‘[ir]"' b ([er]'[ir]'*'[Lr ][IS]) @
The resistance and inductance matrices in (1) and (2)

are given as follows according to the asymmetrical machine
winding structure.

[Rs ], [R,.] - stator, rotor resistance matrices:

[Rs]=[rg roj - 00

0 r, 0
0 0 r,
[LS s] - stator self inductance matrix:
10 1 -4
[Ls ]| = L R
2

where
Ly, Lms - stator leakage and magnetizing inductance.

[er] - rotor self inductance matrix:

1 _1

100 11—7--%—

(L ]=Ly|0 1 O +Ly|-5 1 -5
1 _1

00 I -4-4 1

where
L, - rotor leakage inductance;

[Lsr] - stator-rotor mutual inductance matrix:

[Lsr] = Ly
cos(8,) cos(6, + 27”) cos(8, — 2})
cos(8, — %’1) cos(8,) cos(8, + 27”)
where

0,. - rotor angular position.

[Lrs] - rotor-stator mutual inductance matrix:
cos(8,) cos(6, — 27”)
[Lyg]= Lys| cos(6, + 27”) cos(6,)
2 2
cos(8, —<fF) cos(8, +<F)

To represent the dynamics of the machine by a d-g
machine model, a d-q transformation is generally required.
However, for the machine investigated now, the well known

d-g-0 transformation will not only apply to the asymm@rical
stator winding structure. The d-q transformation for stator
should be redefined.

It is not difficult to show that the eigenvalues of the
stator magnetizing inductance matrix are:

=3 .y
0 "‘?Lms’ 02 _ELmsv

indicating that a time invariant transformation of variables
remains possible.
The eigenvectors corresponding to the two eigenvalues are:

Using the two eigenvectors as the d and g axes the
following stator variable transformation matrix results:

=5 & | r @
=z 7/

As far as the rotor windings are concerned, the d-g-0
transformation for a balanced three phase system is still
applicable since the rotor maintains a symmetrical structure.
The transformation is:

] -4 _1
5
[T ]=43] 0 5 5|
A L L
N2 A2 W2
1 0 I/%
—~] i3 3
(7;] =\/% ~é —\/2; _\/—% @
_1 N3 1L
2 72 3

Applying the transformations [Ts] and [Tr] to the

voliage equations (1.1) and (1.2), the following d-g plane

voltage equations can be obtained. The convention used here
for variable expression is:

B
*o
X — variable ( voltage, current, flux, etc.);
O — axis (ds, gs, dr, gr, etc.);

B — frame (stator, rotor, synchronous, etc.).

Stator voltage equation:

Vi =[rs 0}_ igs +_d_ Lls"'%Lms 0 ) is
vie| L0 ] |is, | at 0 Lig+4L, | |5
3 T 3 n .

Scos(8, +&) —3sin(8, + & r
by B0 IO || )
“5-sin(6, + %) 25-cos(6, +5) || igr

Rotor voltage equation:

e 1]
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0
L, + %Lms

d

dt

.7
Ldr
.r

igr |

Ly + %Lms
0

I

sin(8, + %)

[

1
5cos(6, + %)

V3

2

~4sin(6, +Z) Y cos(8, +Z)

[

.S
| Ygs

+L

ms

}

©®

To eliminate the sin and cos terms in above equations the
following rotor frame to stationary frame transformation is

appropriate:
[Ts] _|cos(8, + &) —sin(6, +Z)
"1™ singe, + £) cos(6, +%)

Applying the rotation transformation to rotor variables
in (1,5) and (1.6) the following stator and rotor combined
voltage equation results:

)

Lds,ds Lds,qs Lds,dr Lds,qr

[ L] - qu,ds qu,qs qu,dr qu,qr
Ldr,ds Ldr,qs Ldr,dr Ldr,qr
Lqr,ds Lqr,qs Lqr,a'r Lqr,qr
Ly 0 My cos(B, + %) ~Mysin(6, + %)
_ Ly M, sin(6, + %) M, cos(6, + —g—)
Mg cos(6, +Z) M,sin(8, +%) L, 0
~Mgsin(8, +£) M, cos(6, +%) 0 L,

(11)

The expression of electromagnetic torque can be
obtained by substituting (10) and (11) into (9), which gives:

P .5 - .5 -
T= —Z—(Mql;sl;r - Mdlésl;r) (12)

It is observed from the analysis above that after one

- s
rVrsis rs+Lasp 0 Map 0 Lds phase of a three phase induction machine is open-circuited,
s +L 0 M .s | the machine model is equivalent to a two phase
Ygs | _ 0 Ts T LasP qP 'gs | asymmetrical stator winding machine as shown in Fig. 5.
0 Myp wqu rr+Lp oL l'ér
| 0 ] ~w,My qu ~@,L, r.+Lp _i;rj +
® Vas INg
where: )
—d
pP= E’ +
3 1 3 Var
Lyq :Lls+_2'Lms’ qu =Lls+§Lms’ Lr=Llr+§Lms Vi Ny
_3 _N3 [ ' ]
My =5Lnss Mg =5 L (Ym

The electromagnetic torque of the machine is expressed
as:
1.1 d . 9
T, == | —1L111i ( )
=4t 5ot}
where qm is the rotor mechanical angular position

o =20

»

» and P is the number of poles.

In (9) the current vector and the inductance matrix can
be determined as:
Xy
tds
.5
Igs |. (10)
T
tdr
g
lqr

1]

Fig. 5 Asymmetrical Stator Winding Two Phase Machine

When flux linkages are used as state variables, the
machine model can be expressed as:

s .S s
Vis =[’s 0] s | | Kas (3
Vgs 0r s lgs 7Vqs
o:l rr 0 iér d }"iir 0 -o, Sdr
= . + 4 + .
0 0 r, i;r at qur o, 0 }\,A;Ir
a4
- P 1 +5 48 I\ xs (15)
T, = —_(Mqlqs dr — Myigg qr)
2L,
where:
ils . L(IS 0 . icsls + Md 0 ) i};r (]6)
;"sqs B 0 qu i;s 0 M‘I i;r
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I FIELD ORIENTED CONTROL
Typical field-oriented control of an induction machine
is accomplished by locking a synchronous reference frame
d€-¢€ to the rotor flux vector. The rotation transformation
from the stationary reference frame to the synchronous
reference frame for an induction machine operating under
balanced condition is:

cos(6,) sin(@e)} (18)

[Tc6e)]= [— sin(8,) cos(6,)

For the unbalanced operation situation investigated
now, this transformation is still applicable to the rotor
variables. However, to overcome the effect of an
asymmetrical stator winding structure and thereby to obtain
a non-pulsating torque, an unbalanced stator excitation must
be provided to the machine. As a consequence, the
transformation of stator variables using the balanced
transformation (18) would result in AC components in the
synchronous frame, which is certainly not desirable for the
purpose of field-oriented control. In this regard, it is
necessary to redefine the rotation transformation for stator

variables.

Consider the stator MMF produced by the asymmetrical
stator windings in Fig. 5. Since the rotor is maintained as a
balanced structure, it can be inferred that for the machine to
produce non- pulsatmg electromagnetic torque, the stator
MMF must remain balanced as well. Therefore, the rotation
transformation (18) continues to be applicable to the stator
MMF vector, that is:

fas | _[ cos(®,) sin(®,) | s (19)
fos | L-sin(8,) cos®)] | fos
where f denots the MMF.

As the numbers of turns of the stator windings in the
equivalent machine model in Fig. 5 are Ng and Ng
respectively, the stator MMF vector can be expressed as:

f ;s - I:Nd 0 :‘ icsis (20)
f ;s 0 Nq i;s

Substituting (20) into (19) we have:

f | [ cos®,) sin®,) 0 iés
fas _[—sin(ge) cos(ee)] 0 Noll|i,

384

Ngcos(8,)  Ngsin(6p) | | i,
T | =Nysin(®,) N, cos(8,) . i;s

N
0, 0 .5
NdN p cos( ) 1’ sin(6,) [l‘?] @1
1} sin(8,) 1’ cos(e ) Ygs

Assuming the pole arcs under the two stator windings
are equal, then:

Ng My
W; = M—q (22)

and
M M, .
£ \ ’HZL cos(0,) 1 fM—Z sin(8,,) i,
fe = VNalg ’Md : M, i
qs W, sin(0,) M, cos(8,)| L9

(23)

or
f:is My M
NaNg | J 7 cos(8,) sm(e ) | ifls

ré - My . >
ijvq - —Mi— sm(@e)\/M:Z cos(B,) | L'as

It is useful to define

fas

—_— .e

VNaNg | _|%s 25)
fos i
NgNg

We finally have, from (24):

M

{iés} \f?‘df_:cos(ee) V3, Sin(®e) \:iﬁs] (26)
e = .

5] ML sin(@,) |3 cos(8,)

q

Eq. (26) is the d-g plane stator current rotation
transformation we have been looking for. As is suggested by
(25), with this transformation, the stator windings in the
synchronous reference frame will be made equivalent to a
pair of balanced d-q windings as depicted in Fig. 6.
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Fig. 6 Synchronous Reference Frame Equivalent Stator
Windings

Assume that the machine is fed by a current regulated
source. Using the rotation transformations (18) and (26) and
aligning d®-axis to rotor flux vector, the following set of
equations governing the dynamic behavior of the machine
under field-oriented control can be derived from Egs. (13)
through (17).

0=1,i% +4 25, @7)

0= rri;r +(w, — @y )25, (28)

8 = MgMgi% +L,i5, (29)

AS, = [MaMyic + Lyil, =0 (30)
pMM,

T, =_2_—Lr—-z;s/1dr 31)

The block diagram of the machine under rotor flux
oriented control is sketched in Fig. 7.

It is observed that Egs. (27) through (31) are identical in
form to the rotor flux-oriented dynamic equations of a
balanced three phase induction machine. Therefore,
techniques of field oriented-control developed for balanced
operation can be used for the unbalanced operation case
discussed here as long as the stator current rotation
transformation is replaced by the unbalanced transformation
(26) and the air gap magnetizing inductance modified to

MM, .

i s [oive | M 6r,

A/ My 0.1/ - sind, 1+Tp
M, ¢ V/ 3 sinfe T
PYMM | ¢ A
p, Lr . -
Md ing A/ 8 i§s=- : laf 2 b +
3 M, sind, Mdcos(-)e YMMg
Igs
VMgM4 - (P12)
T ~ —
r S0, Ip
+
6 I De £ O

Fig. 7 Block Diagram of Rotor Flux Oriented Machine

There are two basic means to achieve rotor flux field
orientation: indirect and direct. Direct field-orientation,
which relying directly upon the knowledge of the rotor flux
linkage vector and thus being physically insightful, will be
adopted for the purpose of testing the theoretical results.

The implementation of a direct field-oriented controller
requires that the position and the amplitude of the rotor flux
linkage vector to be known. Usually, this is accomplished by
employment of a rotor flux estimator. The implementation
of the rotor flux linkage estimator is illustrated as follows.

The d-gq plane rotor voltage equation and flux in rotor
reference frame can be expressed as:

[0]=[rr Ojl. igr +_d_ }“:l'r
ol Lor]lif| ¥\N,
| [y o i +[L, OJ' i
.7
7\,;” 0 1/Maqu Igs 0 L,
Upon solving the rotor current vector from (33) and

inserting the result into (32), a current model rotor flux
estimator equation can be obtained:

r, .
i[xgr}_‘_ir_i:xiir:l - L VMdMq 0 [l;}sji

dt|ar L |41 . ’
7"qr ?‘qr 0 E"MdMq

(32)

:r
lgr
(33)

igs
34

The advantage of this implementation is that it is linear
and has real eigenvalues. Moreover, it requires relative rotor
position rather than rotor velocity as is required by an
implementation in the stationary reference frame. The block
diagrams of the direct field-oriented controller and the flux
estimator are shown in Fig. 8 and Fig. 9.
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Fig. 8 Block Diagram of Direct Field-Oriented Control
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Fig. 1.9 Rotor Flux Estimator

IV. SIMULATION RESULTS AND SUMMARY
- Fig. 10 illustrates the simulation results of direct field-
oriented control using the technique proposed in this paper.

With a constant i, and a step change in z';s,

torque response is proportional to i;s while the amplitude of

the machine

the rotor flux remains unaffected as is normally the case for
field oriented control. Smooth, non-pulsating torque can also
be observed even though the machine is powered from an
asymmetrical two phase supplyl. From the results shown, it
is assured that field-oriented control of the machine with an
asymmetrical stator winding structure has been attained.

V. CONCLUSION

In summary, a unified modeling and control approach
for a three phase induction machine drive with one phase
open has been proposed in this paper. It includes the
development of a stator winding decoupling transformation
to deal with the asymmetrical stator winding structure.
Using this transformation, the original three phase machine
(with one phase open) can be made equivalent to a two
phase machine with perpendicular d-q stator windings of
different numbers of turns. Based on this machine, field-
oriented control strategy is developed to guarantee desired
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independent control of rotor flux and electromagnetic t@rque
in spite of the unbalanced condition.
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Fig. 10 Simulation Result: Demonstration of Field-Oriented
Control. Trace 1: g-axis current (synchronous frame); Trace
2&3: q&d axes rotor flux (rotor frame); Trace 4:
electromagnetic torque.
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