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MODELING AND CONTROL OF A MULTI-PHASE
INDUCTION MACHINE WITH STRUCTURAL UNBALANCE
Part I. Machine Modeling and Multi-Dimensional Current Regulation

Yifan Zhao
GE Corporate R&D Center
I River Road
Schencctady, NY 12301

Abstract: The multiphase winding structure provides an
induction machine with ca{pabilltles of starting and running
even with one or more of its stator phases open-circuited.
However, when operated with such a structurally unbalanced
condition, the dynamic properties of the machine will change
drastically from its balanced operation condition. For
example, field-oriented control strategies developed for a
balanced winding structure will no longer function properly
and could lead to catastrophic consequences. In this paper, a
unified approach to the modeling and field-oriented control of
dual three phase induction machine with one phase open is
presented. Using the concept of vector space :ecomposi(lon.
the proposed technique is established on the basis of the
asymmetrical winding structure directly, and thus provides a
precise, physically insightful tool to the modeling and control
of induction machines with structural unbalance.

Key words: multl-phase induction machine model, vector
space decomposition, multi-dimensional current regulation.

I. INTRODUCTION

The voltage source inverter fed induction machine drive
systems have many advantages such as a rugged and low cost
motor structure, capability of high waveform fidelity with
PWM operation, reasonably high performance, etc. However,
their applications are still limited to the lower end of the high
power range due to the limitations on the ratings of the gate-
turn-off type semiconductor power devices. To achieve high
power ratings in such systems, multi-level inverters have
been developed in the past decade as a promising approach.
Another strong contender in achieving high power is the
multi-phase inverter fed multi-phase induction machine drive
system. In addition to enhancing power rating, a multi-phase
system also has the merit of high reliability at the system
level [2-4). In particular, with loss of one or more of stator
winding excitation sets, a multi-phase induction machine can
continue to be operated with an asymmetrical winding
structure and unbalanced excitation.
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The most commonly used analytical tool for the analysis
of unbalanced operation of electric machines has been the
well known symmetrical component method (3-6]. In this
method, a balanced structure is assumed even after the
machine loses one or more of its phases. Although it has been
used successfully in the steady state analysis on sinusoidal
excitation, however, as far as the dynamics of the machine is
concerned, the method loses its utility due to the fact that the
interactions between the lost phases and the remainder of the
machine windings no longer exist and thus drastically alter
the dynamic behavior of the machine.

As the dynamic behavior of an electric machine is critical
in a modemn drive system, it is necessary to develop analytical
tools which can handle the dynamics of electric machines
under structurally unbalanced operation conditions. In this
paper, a unified modeling and control approach for a dual
three phase induction machine with one stator winding open
is developed based upon the concept of vector space
decomposition proposed in [I]. Instead of using the
conventional symmetrical component method, the proposed
technique is established on the basis of the asymmetrical
winding structure directly, and thus provides a precise,
physically insightful tool to the modeling and control of
induction machine with various types of structural unbalance.

In a multi-phase induction machine drive, since more than
two independent stator currents can flow in the general case,
two dimensional (d-q) current regulation which has been used
very extensively in normal three phase induction machine
drives has been proved to be insufficient [1). This paper will
present the concept of multi-dimensional current regulation
which is dedicated to the current regulation of induction
machine with arbitrary phase numbers.

I1. DECOMPOSITION TRANSFORMATION MATRICES

A. Stator Decomposition Transformation Matrix

Assume that a failure occurs in phase 6 of a drive system
and has caused the cut out of that phase as shown in Fig. | a).
The stator and rotor winding axes are shown in Fig I b) and
¢) respectively. Although the machine has five asymmetrical
phases, as far as its electromechanical energy conversion
property is concerned, it is still equivalent to a two
dimensional d-q winding machine because of its cylindrical

0885-8969/96/$05.00 © 1996 IEEE
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Fig. | a) Dual Three Phase Induction Machine Drive
With One Phase Open
b) Stator Winding Flux Axes;
¢) Rotor Winding Flux Axes.

structure. On the other hand, since five currents can flow
independently in the gencral case, the electrical property of
the machine is still characterized as a five dimensional
system. This fact tells us that three extra dimensions which
are non-electromechanical encrgy conversion related exist in
the machine. In other words, the five dimensional space
spanned by vectors of real machine variables can be
expressed as the direct sum of two orthogonal subspaces with
a two dimensional subspace representing the energy
conversion property of the machine and the other, which is
three dimensional, for the non-electromechanical energy
conversion portion. Since the two different aspects of the
machine property reside simultaneously in machine variables,
it will be desirable to find a decomposition transformation to
decouple them and thereby simplify the modeling and control
of this asymmetrical five phase induction machine.

The subspace corresponding to energy conversion can be
determined by defining two axes, namely ds-axis and gs-axis,
in the air gap flux plane of the machine. Referring to Fig. 1.
b), the ds-axis flux and qs-axis flux can be written as:

s = D15 + $25,08(30”) + 93, cos(120%)
+@4; C0S(150°) + P55 cos(2407)

or
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¢l:
$2s
o =[1 B -4 -F -4} o (1)
04:
¢5:

and
s = b2 $in(30°) + @3, 5in(120°) + 4, Sin(150°) + s sin(240°)

or:
¢l:
(78
0u=[04 F 4 -F]| 0 @
P45
éss

Eq. (1) states that the ds-axis flux is the projection of the
stator flux vector in a five dimensional space on another
vector in that space. Therefore, the vector

a: [14-4-4 -4

represents the orientation of the dg-axis in the five
dimensional space.
Similarly, according to (2), the vector

a: [o444-4]

represents the orientation of the gs-axis. The subspace
spanned by vectors d and ¢ represents the energy
conversion property of the machine.

The vectors which span the three dimensional non-
electromechanical energy conversion subspace can be
determined mathematically. Defining the three vectors as z1,
22, and 23, the following relations exist because of the
orthogonal relations:

dT.q =dT-z, =dT-z2 =dT-Z3 =0 3)
¢ oz =q 5 =q 23 =0 @
7723 =z .23 =0 %)
2723 =0 (6)

The vectors z 1, 22, and z 3 can be solved from the above
equations. Using these five vectors to form the new basis for
the five dimensional space, the following normalized
decomposition transformation results:

0.5774 0.5000 ~0.2887 —0.5000 —0.28877 47
0.0000 0.3536 0.6124 0.3536 -0.6124 |47
[T,]: —0.4177 0.5706 -0.5706 0.4177 0.0000 |z,7 (7)
~0.5196 0.4177 0.3804 -0.5706 0.2921 (,7
0.4714 0.3536 0.2673 0.3536 0.6755 257
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In the following discussions the space spanned by the five
vectors will be referred to as the space d-q-z)-z2-z3. The
transformation (7) transforms the coordinates of a vector in
the original vector space to the new vector space and has the
following properties:

i) Machine variable components which produce air gap
flux or induced by air gap flux will be transformed to the d-q
subspace. The d-q subspace, commonly referred to as the d-q
plane, is electromechanical energy conversion related.

ii) Those components of machine variables which will not
produce air gap penetrating flux will be mapped to the z1-z2-
23 subspace by (7). In this regard, these components can be
classified as a new type of zero sequence component, and the
z1-22-23 subspace will be called zero sequence subspace, or a
zero sequence plane whenever only two out of the three axes
are concerned.

B. Rotor Decomposition Transformation Matrix

The decomposition matrix for rotor variables of the
machine remains the same as the transformation for balanced
operation [1] because the rotor still maintains a balanced
winding structure.

R gy
o} 4 4 A
l/-:g_;/;...l.o

[1,])= ? 3
Blo g B4 4.
10 1 o 1 o0
01 0 1 o 1]

) III. MACHINE MODEL
A. Machine Model in Real Machine Variables
The following assumptions have been made in deriving the
machine model:
1) machine windings are sinusoidally distributed;
2) flux path is linear;
3) mutual leakage inductances due to different phase
windings in the same slots are neglected.
Under these assumptions the voltage equations using the
real machine variables can be written as:
Stator voltage equation:

[Vsl=[Rs}-lis)+ p-([As )
=lR:]'[i:]+P‘([Lss]'[i:]+[Lsr]'[ir]) 9
Rotor voltage equation:

Vel=[& )l 1+ p- (2 )

=[Rr]'[ir]+P'([er]'[ir]+[l'rx]'[ix]) (10)

where, in these equations, the voltage and current vectors are
defined as:

Vir ir

Vis U5
Vor 2r
Vs 125 v; iy
. . r , r
[v,]: vi, |, [:J]= iz 1 [v, = v | [:,]= i

. r

Vs I4s
Vsr sy
Vss S5 .
Vér 6r

The resistance and inductance matrices are defined as
follows according to the machine structure:

[R:]. [R] - stator, rotor resistance matrices:

[Rs ]5,(5 =r;-[1], [Rr]éxa =r,[1]
where [/] is identity matrix.
[Ly] - stator inductance matrix:

1 N3/2 -2 -3/2 -2

Nij2 1 0 -y2 V32

(Lolsus =Lis [1N4Lm| -2 0 1 3/2 -ip2
-V3/2 -2 32 1 0
N2 =N3/2-12 0 1

where
Lisy Ly - stator leakage and magnetizing inductance.

[£+] - rotor inductance matrix:

[eron =L, [/]
1 32 -2 -N3/2 ~12 0

V32 0 -lf2 -V3/2 -12

s | -2 0 1 N3/2 -2 -3/2
™ _V3/2 -2 V32 1 0 -2
-y2 =32 -2 0 JERET

0 -2 -N3/2 -i2 N32 1

where
L, - rotor leakage inductance;

[Ly] - stator-rotor mutual inductance matrix:

[Lxr ]5)<6 =Ly -
4 5 8 on ]
«6,) “g‘ +8,) c(?”+9,) c(?” +8,) c<—6-’5+o,) A5 +6)

11 3n 4n n 8r
aT” +6) C8) AT H0) AT H6) AT HO) AL +8)

8n gn n in n
c(?+9,) L‘(—6—+9,) c(6,) (‘(-6-+9,) (‘(?'*9,)(‘(-6—"#0,)
iz

6

4 5 8 orn n
_c(;”+e,> c(;"w,) c-<7”+6,> GO ) dz+6)

7 8 ! 3
c(-éi+8,)c(?ﬂ+0,)c(%+0,) «8,) c(—6’5+9,)c( +6,)

where

¢ - abbreviation for cos;
6, - rotor angular position.



[L/5] - rotor-stator mutual inductance matrix:

- [L" Lxs =Lp;-

o(6,)

1lx n
C(T-o') C(O,) —6_-9’)

8n or n ir
dT-O,)d—g-O,) «(6,) c(;-er) d—6—-0,)

7 8 1!
d;"-o,) c(-f—o,)dT"-o,) «(6,)
4 8
-4, c<’6—"-e,) «%-0) c(%—an «8,)
4 7
43—:--9,) 47“—0,) c(—a’i—an c(%—er) d'—;’—'—on

n in Sn 8n ]
0(3'-0,) 0(7-9,) C(T-O,) C(T-9,)

3n 4in
C(-G—-Gr) d_6_-8') o

3in
(.‘(—6— -8,)

B. Machine Model In The d-q-zj-22-23 Vector Space
Applying the transformations [T,] and [T, ] to the voltage

equations (9) and (10) yields:
Stator voltage equation:

[T,]~[V,]-[T,]-[R,]-[T,]'I.[T,]-[i,]
sp- (T L HET (7 1)+ 7, ) {2 M T (7 1)

an
Rotor voltage equation:

[Tr]'(Vr]=[Tr]'[Rr]'[Tr rl'[Tr]'[ir]
+p-{{T Mt M T T i 3o T e M T (7, 1)
(12)
One can define the machine variables in the d-g-z)-22-23
space as:

[vis i |
Vl;’ i;x
Vil =[TXHVI]' i3 =[Ts]'{".v]v
S 3
Vi2 122
Vi3 iZs)
[ vz, ] 0 i{lr
v 0 i
(4 4r
v;lr = [T,]-[V, ] - 0 - l'z'lr = [Tr ]'[ir l
"{2' 0 i:’Zr
v:" 0 i:’Jr
_\’:4,_ 0~ i:’lr

The convention used here for variable expression is:

2

a
x — variable ( voltage, current, flux, etc.);
a — axis (ds, gs, dr, qr, z|s, etc.);
B — frame (stator, rotor, synchronous, etc.).

From (11) and (12), the following equations describing
the dynamics of the machine in the d-q-zj-23-z3 vector space
can be derived.

Machine model in the d-q subspace:

Stator voltage equation:
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Vas ,[’: 0]_ ids +i [Ll.r""Lm: 0 ] ids
vf,, 0rs i;, di 0 Ly + 2Ly i:,

3cos(6,) -3sin(8,) ] |ig
"’Lm[ﬁsin(ar,) chos(e,)]'[ r]] (13)

r
lar

Rotor voltage equation:
o]- r, 07 |i% LA L +3L,, O igr
oj-lor} i‘;, dt 0 Ly +3L,, ' i;,

+’-m[ 3cos(8,) ‘J—6_Sin(9r)]‘[i§3]} (14)

-3sin(8,) V6 cos(6,) | i,

Machine model in the zero sequence subspace:
Stator voltage equation:

r
. - 0 0 . L
d i21s I“; ':I: Lyg 00 vils

E igz_‘ = 0 ——rL& 0 | igzl +| 0 t 01 Vi:z‘
235 _rs | igss 0 0 Veis
o o - '
(15)
Rotor voltage equation:
‘7:7" 0 0 o
izlr 0r r, 0 0 i;lr
_d_ iz'Zr = -IIT . iz’2r (16) ’,
di|if 0 0 -I= o i7
23r L 23r
izrdr 0 0 or Z'IL iz'h
r

It is observed that there are no excitation terms in (16).
Therefore, this portion of the machine dynamics can never be
excited and, hence, will not be discussed further in this paper.

In the analysis just completed, d-q reference frames were
attached to the stator and the rotor separately. To transform
the rotor variables to the stationary reference frame and thus
eliminate the sin and cos terms in the above equations, the
following rotation transformation is appropriate:

[T’ ]= [cos(e,) -sin(e,)]

sin(8,) cos(6,) an

With this transformation, the d-q stator and rotor
equations can be expressed as:

Vas | _[rs+Llasp O igs| [Map 0 1 |id
el o

qs qr
[0]=[r,+L,p 0 ] iar || Map oM fiGi| gy
0 0 r.+Lp ,';’ -o,My M,p ,';s
where
p=4

Lys =L+ 3L,,. qu =L +2L,,. L, = L, +3L,,
My =3Lp,. M, ='\/ng3
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Egs. (18) and (19) suggest that the machine model in the
d-q plane is a two phase machine with asymmetrical d-q
windings.

If stator and rotor flux linkages are used as state variables,
(18) and (19) can also be written as:

[vng:; f][g:]*%ﬁﬂ (20)

R A
where: '

ﬁ:ﬁ}[l’g L:][Z;‘i'j*[‘;‘ ﬁqug:] (22)

C. Electromagnetic Torque
The electromagnetic torque of electrical machine is
expressed as:
lear [ @ .
T, =={if || <=[L}|- 24
=3 el 1)
As the d-q plane is electromechanical energy conversion

related, the current vector in (24) should include d-q plane
currents only, i.e.

igs
iy
lil={ 7 (25)
bdr
) il;'
For the same reason, the d-q plane inductance matrix

should be used for the inductance matrix [L] in (24). It can be
determined as:

Ld:.d: Ld:.qs Ld:.dr Ld.r.qr
_ Lysds Lgsgs Lysar Lgsgr

[L] " Ldr.ds Ldr.q: Ldr.dr Ldr.qr
Lqr.d: Lqr.qs Lqr.dr Lqr.qr
Lys 0 M, cos(8,) =M, sin(8,)
0 Lys M,sin(6,) M, cos(6,) 26)
My cos(6,) Mq sin(6,) L, 0
—-Mysin(8,) M, cos(6,) 0 L,

The electromagnetic torque of the machine is obtained by
substituting (25) and (26) into (24), which yields:

P s 5 -
T, = 3(Mql;slj, - Myigsig) 27

Another expression for electromagnetic torque which is
extremely useful for the purpose of torque control is the
form expressing the rotor flux linkage interacting with the

5
stator current. This form can be obtained by solving [":’

i

qr

from (23) and inserting the result in (27). The expression is:

P . :
Te= —z_le(M{[ll;SA:-lr - Md‘jslip') (28)

IV. DOUBLE-PLANE CURRENT REGULATION

At this juncture the development of the dynamic model of
the machine in the d-q-z)-z2-z3 space has been completed. It
is expected that the control of the machine will also be
simplified due to the decoupled nature of the machine model
in the new space. However, the control of the machine in the
d-q-z1-22-23 space can not be implemented until the inverter
model is transformed to the new space as well. This problem
will now be solved.

A. Line Voltage to Phase Voltage Transformation

Most drive systems are configured without a machine
neutral wire connection. In this case, a switching mode of the
inverter only gives the machine’s line to line voltages and a
transformation from line voltage to phase voltage is generally
requircd for purpose of machine current regulation. For
machines operated under balanced conditions, this
transformation is simply a constant matrix and can easily be
solved from the loop equations and the node equation at the
terminals of the machine. However, for the unbalanced
operation investigated in this paper, a constant matrix for the
line voltage to phase voltage transformation does not exist.
The transformation from line voltage to phase voltage
remains to be identified. Generally, this transformation
would have the form:

[vphase]= F([iphasel'[vline}[nlwr) (29)

[n}—machine parameter vector.

Since instantaneous machine currents and the shaft speed
are involved in the transformation, the phase voltages
corresponding to each switching mode must be calculated on-
line, and is thus impractical due to the complexity of the
relation. Although an accurate off-line transformation is
impossible, it will be shown in the following that a constant
transformation which is a very close approximation of (29)
exists.

It can be proved that with the winding resistances ignored
and the rotor locked, the differential equation of the machine
with line to neutral voltages as inputs is:



ir,]
'- vll’
23
iJ: Y2
(L L) 4 i | 7128 (30)
S V4s
dr
l-q" v’J
where:
LlJ"'%me I*zﬁ Lpns 0 I‘/_—zi"n:
J}Lm Ly 2+2‘/§ L g ‘J—Z-ll""‘
[Lllg 0 fLm LIJ+%LMI l‘szm
3 dlpy DLy Lyl
| ~Lis =4 ms ~Lis =252 Ly ~Liy = Ly ~Lis = L
[ V3L, O
flny Gl
[La)=| - L 3w
ALy F L
- S s ~$Lms

The differential equation can also be expressed with line to
line voltages as inputs:

s Vs
f2s | |vass
Ly L i
[ 1 12}% 35 | _ (V345 an
Lop Lo ¥ ias | | vess
igr 0
igr 0
where:
Ly« 'J_:ZTQ Lps —Lys '%Lms - Lnu' '(‘/3 = Dl
L ‘/}Lm LI: * “;/} Lms Ly - J-f Lm 'Lm.t
1=
G 1 L Lu+’—,—‘CL..,-q,o@tm

Ly o 2L by 1 L 1 1+ B2, 21y w21,

Wy, -G,
R, B,
7‘£L =0,
£2_Lm.v G+3 Loy

J-+3
L21=\/-L [#LMI

0 Ji- Lons
$ L G, I B0,

L _ Ll,*3Lm 0
271 0 L, 43y,
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The inductance matrix in (31) is a square matrix and can
be shown to have full rank. Therefore, the derivative of the
current vector can be solved from (31) as:

r.oo

ls Vi2s

i2s V235

. !

1

4 s =[Lu Ln]_' Vids (32)

les| LLar Laa] |Vass

igr 0

13

[or ] 0

Substituting (32) into (30), the following line voltage to
phase voltage transformation results:

Vi2s
:I‘ V23s
& Vi4s
vis [=[7P] o (33)
Ves 0
Vss 0
where:
Ly LpT!
[r7]=1u ’-z]‘[LH Lu]- (34)

Since the last two elements of the voltage vector on the’
right side of (33) are zeros and hence do not contribute any
thing to phase voltages, the last two columns of [Tf l can be

ignored. The resultant transformation is a 5 by 4 matrix with
its elements being only the functions of machine parameters
and thus can be readily calculated off-line. For the given
machine parameters this transformation is

vir] [0.7921 0.6039 04302 0.24217
v | |-0.2079 0.6039 0.4302 0.2421 v”’
vis |=| -0.2079 —0.3961 0.4302 0.2421 || ?*| (35)

ves | |-0.2079 —0.3961 -0.5698 0.2421 | |

vs,| |-0.2079 -0.3961 -0.5698 -0.9579| L'

B. Inverter Voltage Vector Transformation

The voltage source inverter depicted in Fig. 1 has five
working phases remaining. The number of switching modes
of this five phase inverter is 32. For each of the 32 switching
modes, a line to line voltage vector applied to the machine by
the inverter can be uniquely determined. To obtain the
projections of this voltage vector on the d-q and the z-22-23
subspaces, one can use transformation (35) to obtain the
corresponding phase voltage vector first, and then transform
the phase voltage vector to the d-q and z|-z2-z3 subspaces
using the decomposition transformation (7). The two
transformations can be cascaded to form a one-step
transformation:
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Vi | [05774 10774 07887 0.28877

v, | |-0.1470 0.0735 0631 07836 || ¥

Vi |=| 04177 0.1529 -0.4177 0.0000 |.| ¥\ (36)
vig, | |-0.5196 ~0.1019 0.2785 -0.2921| | *¥

vi,| L0.0304 —0.0152 -0.1164 -0.1620) "

With this transformation, the 32 line to line voltage
vectors corresponding to the 32 switching modes of the
inverter can be transformed to the d-q plane and the zj-z2
zero sequence plane respectively as shown in Fig. 2 a) and b).
The projections of the voltage vectors on the z3-axis are not
shown due to the assumption that the stator windings of the
machine are tied to a single neutral. In this case, the z3-axis

Fig. 2 a) Inverter Output Voltage Vectors
Projected on d-q Plane;
b) Inverter Output Voltage Vectors Projected on z1-22 plane.

is linearly dependent to the rest of the axes, and the drive
system is then, in actuality, a four dimensional system.

C. Double-Plane Current Regulation Scheme

The four dimensional property of the system requires that
the current regulation be performed on a double-plane basis.
The two planes are named d-q and z1-z2 as suggested by the
previous discussions. The principle of the double-plane
current regulation scheme is illustrated as follows.

On the d-q plane, if ignoring rg and rr, the following
voltage equation can be derived from (20) through (23):

5 ! 0 .5 0 - ..M_d KS

Vds | _ Lys L dllds + L | Mr (37)
s |- 0 L' dt} ;s M KS

Vgs qs gs | |, TlL 0 gr

M, LM,
where Ly = L,,,—"“',_—"’, Lys = Lys — 5.

Letting

.5 .5* .8
e | g )| B (38)
igs igs Alqs

in (37) and reorganizing the resultant equation we have:

bas 0. g ke |1 (39)
0 Lq, iy, Cys Vos

N34 .5
. Aiy.
where [""‘] and I:A;d‘} are the current reference and the

5% 5
lys s

current error vectors in the d-q plane, and:

' . w0 M
eds 252 Ly 0 _i’j; + OM “rT, . A
€5 0 Lys| “ligs| |7 0 Ayr
(40)

Eqg. (39) can also be written as:

! -5 5
[ 2 )4[2b]-e-0) @

qs gy gy
Although (39) and (41) are essentially the same, the latter
states cxplicitly that the machine is fed by a switched power
supply with k denotes the kth switching mode of the inverter,
Eq. (41) expresses the fact that with the position of the
vector E known, one can choose a switching mode to
determine the derivative of the current error vector and
thereby to control the direction in which the current vector
would change under that switching mode. With the switching
mode being properly selected, the current error can always
be decreased. The position of the vector E can be determined



from (40) assuming the rotor flux vector is known, which is
truc when the machine is operated with direct ficld-oriented
control.

As far as the current regulation on the zj-z2 plane is
concerned, the same concept discussed above can be employed
but with a much simpler expression for the current error
behavior. Eq. (42) describes the counterpart of (41) on z;-2
plane. It is derived from (15) by ignoring rg and considering
the fact that the current error on zj-z7 plane is essentially
equal to the negative of real current since the current
reference vector on this plane is always zero.

!
_d_[Aigl:]__T-: 0 ‘l:"ils(k):‘
. - 1
@ aigs 0 77| Lvzasth)

Eq. (42) states that the direction of the derivative of the
current error vector on the z)-z2 plane is opposite to the
voltage vector transformed from the inverter output voltage
vector to this plane.

At this point, the double-plane current regulation scheme
for the machine operated with one phase open can be
summarized as:

i) Search for a inverter switching mode according to the
positions of the current error vector and the vector E on d-q
voltage vector plane (Fig. 2. a) such that the dot product of
the current error vector and the derivative of the current
error vector calculated from (41) is negative.

ii) On the z1-22 voltage vector plane (Fig. 2. b), the dot
product of the current error vector and the current error
derivative vector, which is produced by the same switching
mode and calculated by (42), should also be negative.

ii) If ii) is not satisfied, repeat from 1i).

(42)

V. CONCLUSIONS

The modeling of asymmetrical multi-phase induction
machine based directly on the asymmetrical winding structure
and the regulation of multi-phase current on a multi-plane
basis have been conceptualized in this paper.

The proposed analytical modeling approach includes the
development of a decomposition transformation to deal with
the asymmetrical stator winding structure. With this
transformation, the dynamics of the machine can be
decomposed with a d-q plane machine model, which is an
equivalent two phase induction machine with asymmetrical
stator windings, to represent the electromechanical energy
conversion property of the machine, and a zero sequence
plane machine model describe the behavior of non-electro-
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mechanical energy conversion related components.

The double-plane current regulation, or so called multi-
dimensional current regulation in the general case, regulates
machine currents on the d-q plane and the zero sequence
plane separately. The technique not only solves the problem
of multi-phase current regulation, but also makes the problem
conceptually clear. That is, the torque control of induction
machine with arbitrary phase numbers can always be
performed on a d-q plane, and any current components other
than d-q will be nonetheless minimized on the planes
orthogonal to the d-q plane if the efficiency of the machine is
a major concern.
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